黑金开发板之 OV5640 图像显示 Rev. 1.00

版本记录			
版本	时间	作者	描述
Rev1.00	2016-10-28		First Release

第一部分 OV5640 摄像头模组介绍

OV5640 摄像头模组采用美国 OmniVision(豪威)CMOS 芯片图像传感器 OV5640,支持自动对焦的功能。OV5640 芯片支持 DVP 和 MIPI 接口, OV5640 摄像头模组通过 DVP 接口和 FPGA 连接实现图像的传输。

1.1 OV5640 的参数说明

以下为 OV5640 模组的详细参数:

- ➢ 接口:DVP 接口;
- ➤ 像素:硬件像素 500W;
- ▶ 感光芯片:OV5640;
- ▶ 感光尺寸:1/4;
- ▶ 模组内容:含 OV5640 电源电路、闪光驱动电路;
- ▶ 功能支持:自动对焦,自动曝光控制(AEC),自动白平衡(AWB);
- > 图像格式: RAW RGB, RGB565/555/444, CCIR656, YUV422/420,
 YCbCr422 和压缩;
- ▶ 捕获画面: QSXGA(2592x1944), 1080p, 1280x960, VGA(640x480), QVGA(320x240);
- ▶ 工作温度:-30~70℃,稳定工作温度为0~50℃

1.2 OV5640 的上电要求

为了让 OV5640 上电后能正常工作, OV5640 的程序设计中需要考虑 OV5640 的上电时序的要求。OV5640 的上电步骤如下:

步骤1: ResetB 拉低,复位 OV5640。 PWDN 引脚拉高。

步骤 2: DOVDD 和 AVDD 两路最好同时上电 这在模组的电源设计中实现。

- 步骤 3: 等电源稳定 5 毫秒后, 拉低 PWDN。
- 步骤 4: PWDN 置低 1 毫秒后, 拉高 ResetB。
- 步骤 5:20 毫秒后,初始化 OV5640 的 SCCB 寄存器设置

Rev1.00

1.3. OV5640 的寄存器配置

OV5640的寄存器配置和 OV7670的寄存器配置一样都是通过 FPGA 的 I2C 接口来配置。用户需要配置正确的寄存器值让 OV5640 输出我们需要的图像格式, 在本实验中我们配置 OV5640 为视频输出图像为 720P(1280x720), 帧频为 30fps 的 RGB565 的图像格式。具体的寄存器配置大家可以参考文档" OV5640_自动对焦照相模组应用指南"。

为了方便调试,用户可以配置寄存器来使能 OV5640 的内部测试图像,比如显示彩色条和彩色四方形。

Color bar 彩色条

write_i2c(0x503d, 0x80); write_i2c(0x4741, 0x00);

Color bar

Color square 彩色四方形

write_i2c(0x503d, 0x82); write_i2c(0x4741, 0x0);

OV5640 的摄像头输出的数据格式在以下的 0x4300 的寄存器里配置,在我

们的例程中 OV5640 配置成 RGB565 的输出格式。

Format Control 00 Bit[7:4]: Output format of formatter module 0x0: RAW Bit[3:0]: Output sequence 0x0: BGBG ... / GRGR ... 0x1: GBGB... / RGRG... 0x2: GRGR ... / BGBG ... 0x3: RGRG... / GBGB... 0x4~0xF: Not allowed 0x1: Y8 Bit[3:0]: Does not matter 0x2: YUV444/RGB888 (not available for full resolution) Bit[3:0]: Output sequence 0x0: YUVYUV..., or GBRGBR 0x1: YVUYVU..., or GRBGRB.. 0x2: UYVUYV..., or BGRBGR... 0x3: VYUVYU..., or RGBRGB... FORMAT CONTROL 0x4300 0xF8 RW 0x4: UVYUVY..., or 00 BRGBRG... 0x5: VUYVUY..., or RBGRBG.. 0x6~0xE: Not allowed 0xF: UYVUYV..., or BGRBGR... 0x3: YUV422 Bit[3:0]: Output sequence 0x0: YUYV... 0x1: YVYU... 0x2: UYVY ... 0x3: VYUY... 0x4~0xE: Not allowed 0xF: UYVY ... 0x4: YUV420 ~ .

关于 OV5640 的寄存器还有很多很多,但很多寄存器用户无需去了解,寄存

Rev1.00

http://oshcn.taobao.com

器的配置用户可以按照 OV5640 的应用指南来配置就可以了。如果您想了解更多的寄存器的信息,可以参考 OV5640 的 datasheet 中的寄存器说明。

第二部分 硬件连接

下面以黑金的 AX301 助学开发板为例介绍 OV5640 摄像头模组和开发板的 硬件连接。OV5640 摄像头模组是 18 针的排针,实物图和排针的引脚定义如下: OV5640 模组实物图:

OV5640 模组接口定义:

Pin 脚	信号名	Pin 脚	信号名
Pin1	3.3V	Pin2	GND
Pin3	CMOS_SCLK	Pin4	CMOS_SDAT
Pin5	CMOS_PCLK	Pin6	CMOS_VSYNC
Pin7	CMOS_D3	Pin8	CMOS_D2
Pin9	CMOS_D7	Pin10	CMOS_D6

Rev1.00

Pin11	CMOS_XCLK	Pin12	CMOS_HREF
Pin13	CMOS_D0	Pin14	CMOS_D4
Pin15	CMOS_D5	Pin16	CMOS_D1
Pin17	CMOS_RESET	Pin18	CMOS_PWDN

在 AX301 开发板上,留有一个 16 针的 CAMERA 接口(J5),OV5640 模组和 开发板连接的时候,只要把模组的插针对准开发板上的 CAMERA 接口插入,模组 的 Pin1 脚和开发板上的 CAMERA 接口的 Pin1 脚对齐(方形焊盘为 1 脚)。连接 后如下图所示:

连接后 OV5640 和开发板 AX301 的 FPGA 的管脚对应关系如下:

OV5640 信号名	Camera 接口管脚	FPGA 管脚号
CMOS_SCLK	PIN3	F1
CMOS_SDAT	PIN4	F3
CMOS_PCLK	PIN5	G1
CMOS_VSYNC	PIN6	F2
CMOS_D3	PIN7	M1
CMOS_D2	PIN8	G2
CMOS_D7	PIN9	J2

CMOS_D6	PIN10	J1
CMOS_XCLK	PIN11	K2
CMOS_HREF	PIN12	K1
CMOS_D0	PIN13	L2
CMOS_D4	PIN14	L1
CMOS_D5	PIN15	N5
CMOS_D1	PIN16	M6
CMOS_RESET	PIN17	N6
CMOS_PWDN	PIN18	M7

如果是 AX515、AX530 或者 AX822 的开发板,因为开发板上没有摄像头接口,所以需要用我们提供的转接板连接摄像头,把转接板插到开发板的扩展口上(AX515 和 AX530 是扩展口 J3, AX822 是扩展口 J15),再把摄像头插到扩展板的 J2 上。AX515 开发板连接摄像头后如下图所示:

第三部分 OV5640 VGA 显示实验

本实验以 AX301 开发板为例,需要把 OV5640 的 1024*720 像数大小的视频图像输出到 VGA 显示器上显示,程序上电后先对 OV5640 的寄存器进行设置,再采集摄像头的图像存储到 SDRAM 中,再从 SDRAM 中取出图像数据显示到

Rev1.00

http://oshcn.taobao.com

VGA 显示器上。

3.1.程序设计

程序中把 SDRAM 存储空间分为 2 个区 (Bank0 和 Bank3), SDRAM 的读和写在不同的 Bank 空间。当 Bank0 在写入摄像头采集的图像, VGA 读取 Bank3 的数据显示;当 Bank0 写入一幅图像完成后,读写的空间交换, Bank3 开始写入摄像头采集的图像, Bank0 为读出 VGA 输出的图像。

另外从 OV5640 摄像头得到的图像为 1024 x 720 的像数大小的, VGA 显示器只能显示 1024x768 的图像数据, 我们在 VGA 显示程序中需要对这多余 48 行补黑色的背景数据。

OV5640 VGA 显示的例程包含一个顶层模块 sdram_ov5640_vga.v, 一个上 电等待程序 power_on_delay.v, 一个寄存其配置程序 reg_config.v, 一个摄像头 数据采集程序 CMOS_Capture.v, 一个 VGA 显示和 SDRAM 控制程序 sdram_vga_top.v, 一个系统控制模块 system_ctrl.v。完成后的工程结构图如下 图所示:

1). 上电等待程序: power_on_delay.v

因为 OV5640 有上电时序的要求,这个程序我们是 FPGA 上电后等待一段时间再使能配置 OV5640 寄存器,从而来满足 OV5640 这个时序的要求。

Rev1.00

2). OV5640 寄存器配置程序: reg_config.v

OV5640 的寄存器配置的程序在 FPGA 启动后调用 I2C 的通信程序对 OV5640 的寄存器的进行参数设置,这里我们设置 OV5640 输出的图像为 1024*720 的像数大小。

3). 摄像头图像采集程序: COMS_Capture.v

摄像头图像采集程序把从 OV5640 模组传来的 8 位图像转化为 16 位数据宽度,并产生 SDRAM 的写信号。另外程序产生 frame_valid 信号指示一副图像采集完成,通知 SDRAM 的 Bank0 和 Bank3 的读写空间交换。

4). Sdram 控制和读写程序:sdram_top.v

sdram_top 模块和 3 个子模块(sdram_ctrl.v, sdram_cmd.v, sdram_wr_data.v) s 实现了 sdram 的初始化,用户接口的读写命令解析, sdram 的突发读写,自刷新和预充电等操作控制。

其中 sdram_ctrl 模块实现 SDRAM 的初始化, 60ms 的自刷新, 用户读写请 求命令解析, 使用状态机和计数器生成不同 SDRAM 操作的状态位。

sdram_cmd 模块根据 sdram_ctrl 模块中产生的状态机 init_state 和 work_state 来产生各种 SDRAM 的控制或 burst 读写命令。

sdram_wr_data 模块是 SDRAM 读写双向数据控制模块,在写 SDRAM 时,把数据传输到 SDRAM 的数据总线上,在读 SDRAM 时,把 SDRAM 总线上的数据传输给用户接口。

5). FIFO 控制程序: dcfifo_ctrl.v

Dcfifo_ctrl.v 模块用于对读 FIFO 和写 FIFO 的控制和 SDRAM 的读写命令和 读写地址的产生。本实验中,向 SDRAM 写入的数据首先存放在写 FIFO 中,从 SDRAM 中读出的数据首先存放在读 FIFO 中

当写 FIFO 的数据内数据大于一个 SDRAM burst 长度(256)的时候产生

Sdram 写命令。

190		<pre>else if(sdram_init_done == 1'b1)</pre>
191	Ė	begin //写入优先,带宽内防止数据丢失
192		if(wrf_use >= wr_length && frame_write_done == 1'b0) //
193	Ė	//wrfifo满突发长度
194		sdram_wr_req <= 1; //写sdarm使能
195		sdram_rd_req <= 0; //误sdram空内
196	F	end
197		<pre>else if(rdf_use < rd_length && data_valid_r == 1'b1 && frame_write_done == 1'b1)</pre>
198	Ė	begin//rdfifo满突发长度
199		sdram wr req <= 0; //写sdram空闲

当读 FIFO 的数据长度小于一个 SDRAM burst 长度(256)的时候产生 Sdram 读命令。

196	F	end			
197		<pre>else if(rdf_use < rd</pre>	_length && data_valid_r	: == 1'b1 && frame	write_done == 1'b1)
198	Ė	begin	//rdfifo满突发长度		
199		s <u>dram wr req <= 0</u>	<u>; //写sdram空闲</u>		
200			; //读sdram使能		
201	H	end			
202		else			
	<u> </u>				

6). VGA 显示程序: lcd_driver.v

lcd_driver.v 模块实现 VGA 显示器的图像显示,按照 VGA 的时序标准产生行 同步,列同步和图像数据信号的时序。VGA 的时钟频率:以 1024x768@59.94Hz(60Hz)为例,每场对应 806 个行周期,其中 768 为显示行。 每显示行包括 1344 点时钟,其中 1024 点为有效显示区。由此可知:需要 VGA 的时钟频率: 806*1344*60 约 65MHz。以下为 VGA 的时序图:

VGA 行时序:

VGA 场时序:

另外因为 OV5640 输出的视频图像是 1024x720 的像数大小,但 VGA 显示为 1024x768 的图像,程序中为了让视频图像现在在 VGA 显示器的中间,已经在 VGA 图像的前 24 行和后 24 行插入了黑色图像数据:

81	assign lcd_en =	$(hent \geq H SYNC + H BACK \in hent < H SYNC + H BACK + H DISP) \in $
02	(vene	V SINC T V DACK T ZT SS VEIE C V SINC T V DACK T V DISF - ZT
83	? 1'b1	: 1'b0;
84	assign lcd_rgb = lcd	_en ? lcd_data : 16'd0;
85	assign lcd_framesync =	lcd_vs;
86		
87		
88	//	
89	//ahead a clock	
90	assign lcd request =	(hent >= `H SYNC + `H BACK - 1'd1 && hent < `H SYNC + `H BACK + `H DISP - 1'd1) &&
91	(vent	>= `V SYNC + `V BACK + 24 && vent < `V SYNC + `V BACK + `V DISP - 24
92	? 1'b1	: 1'b0;
93	assign lcd_xpos = lcd	_request ? (hcnt - (`H_SYNC + `H_BACK - 1'b1)) : 11'd0;
94	assign lcd ypos = lcd	request ? (vont - (`V SYNC + `V BACK - 1'b1)) : 11'd0;
0.5	_	

7). SDRAM Bank 交换程序: sdbank_switch.v

Bank 交换程序实现 SDRAM 读和 SDRAM 写分别在不同的 Bank 操作,当 Bank0 在写入摄像头采集的图像, VGA 读取 Bank3 的数据显示;当 Bank0 写入 一幅图像完成后, SDRAM 读写的空间交换, Bank3 开始写入摄像头采集的图像, Bank0 为读出 VGA 输出的图像。

8). 系统控制程序: system_ctrl.v

产生 SDRAM 的时钟(100Mhz)和 VGA 的像数时钟(65Mhz), 另外程序也产 生整个系统的一个复位信号。

3.2. OV5640 VGA 显示实验

编写完程序后,分配 FPGA 的 Pin 脚,重新编译通过后我们就可以开始 OV5640 VGA 显示实验了。开发板插上摄像头 OV5640 和 VGA 接口连接 VGA 显示器,再下载 sof 文件到 FPGA,我们就可以在 VGA 显示器上看到 1024x768 的视频图像了。

12

OV5640 视频图像显示效果 1(近景):

OV5640 视频图像显示效果 2(远景):

第四部分 OV5640 LCD 显示实验

本实验以黑金的 7 寸 LCD 显示屏为的大家演示 OV5640 的视频图像在 7 寸 LCD 液晶屏上显示。实验中以 AX301 开发板为例,把 OV5640 的 800*480 像数 大小的视频图像输出到 LCD 上显示 程序上电后先对 OV5640 的寄存器进行设置, 再采集摄像头的图像存储到 SDRAM 中,再从 SDRAM 中取出图像数据显示到

LCD 显示器上。

4.1 程序设计

程序设计的思路和方法基本上跟 OV5640 VGA 显示的例子一样,下面只要说明一下 OV5640 LCD 显示和 OV5640 VGA 显示实验不一样的地方。

1). LCD 驱动程序:lcd_driver.v

7 寸 LCD 显示屏的显示像数为 800x480,图像刷新频率为 60hz, LCD 驱动程 序实现 LCD 屏的图像显示,按照 LCD 屏的 datasheet 产生行同步,列同步,DE 和图像数据信号的时序。LCD 屏的显示时序要求如下:

具体的时序要求请参考LCD的datasheet。

2). 系统控制程序: system_ctrl.v

这里产生的7寸 LCD 的时钟频率为 25 Mhz。

3). OV5640 寄存器配置程序: reg_config.v

这里配置 OV5640 的图像输出为 800x480 的像数大小。

Rev1.00

14

4.2 OV5640 LCD 显示实验

编写完程序后,分配 FPGA 的 Pin 脚,重新编译通过后我们就可以开始 OV5640 LCD 显示实验了。开发板插上摄像头 OV5640 和 LCD 接口 (P3)连接 7 寸 LCD 液晶屏,再下载 sof 文件到 FPGA,我们就可以在 LCD 液晶屏上看到 800x480 的视频图像了。

OV5640 视频图像 LCD 显示效果

